A. Yu. Denisov, V. I. Mamatyuk, and O. P. Shkurko

UDC 543.422.25:547.82:541.67

The proton-coupled 13 C NMR and PMR spectra of pyridine and the 2- and 3-monosubstituted pyridines NC₅H₄X [where X = CH₃, CN, COCH₃, COOCH₃, N(CH₃)₂, NO₂, OCH₃, Cl, or Br] for one-molar solutions of the compounds in DMSO-D₆, have been analyzed. The signs and values of the 13 C- 1 H HSSCs have been determined. Equations have been obtained connecting the 13 C- 1 H SSCCs in the 2- and 3-substituted pyridines and the monosubstituted benzenes. A satisfactory correlation of 1 JCH with the F and R constants of the substituents has been shown.

The 13 C NMR spectra of monosubstituted pyridines have already been studied. The influence of the substituents on the chemical shifts of the 13 C nuclei of the heteroaromatic ring has been investigated in detail and relationships have been found connecting the chemical shifts of the 13 C nuclei in the spectra of the monosubstituted pyridines and benzenes and also the dependence of these parameters on the σ -constants of the substituents [1-3]. However, there is practically no information in the literature that characterizes the influence of substituents on the 13 C- 1 H SSCCs, which is connected with specific difficulties in analyzing the proton-coupled 13 C NMR spectra of the compounds [4]. The complete analysis of such spectra (involving accurate values of the parameters of the PMR spectra of the compound) have been made only for pyridine and 2-bromopyridine [4], and in other investigations the 13 C- 1 H SSCCs were obtained with a relatively low accuracy [5, 6] which does not permit a detailed study to be made of the influence of the substituents on the constants. All the investigations were performed for highly concentrated solutions of the compounds but the influence of the solvents and the concentration on the 13 C- 1 H SSCCs was not studied in detail.

In the investigations performed previously, it was observed that the ¹³C—¹H SSCCs can serve as a reliable tool for the study of the structure and electronic effect in organic compounds [7, 8]. The informativeness of the ¹³C—¹H SSCCs is particularly high (in comparison with the other parameters of the NMR spectra) in the study of the influence of substitution on the NMR spectra of aromatic and heteroaromatic compounds. Thus, the amount of information on the ¹³C—¹H SSCCs in monosubstituted benzenes is close to that of the total in-

TABLE 1. Parameters of the PMR Spectra of the 2-Substituted Pyridines $\text{NC}_5\text{H}_4\text{X}$

Com-		Chemical shifts, δ, ppm						J _{HH} , Hz					msd ^a ,
pound		3-H	4-H	5-H	6-H	СН₃	J_{34}	J_{35}	J_{36}	J_{45}	J_{46}	J_{56}	Hz
Jb Ilc III IV VII VIII VIII IX X	H CH ₃ CN COCH ₃ COOCH ₃ N(CH ₃) ₂ NO ₂ OCH ₃ CI Br	7,395 7,243 8,072 7,980 8,096 6,608 8,362 6,823 7,541 7,676	7,795 7,667 8,101 8,023 8,041 7,486 8,309 7,702 7,895 7,791	7,395 7,174 7,784 7,685 7,690 6,556 7,954 6,977 7,446 7,478	8,604 8,458 8,802 8,756 8,773 8,089 8,737 8,189 8,457 8,433	2,471 2,668 3,938 3,003 - 3,859	7,81 7,85 7,85 8,60 8,18 8,36 8,06	1,18 1,20	0,97 0,96 0,91 0,92 0,90 0,78 0,90 0,82	7,84 7,59 7,66 7,07 7,53 7,09 7,42	1,89 1,73 1,75 1,77 2,03 1,81 2,02	4,88 4,83 4,75 4,72 4,93 4,66 5,04 4,86	0,002 0,013 0,002 0,011

a) Mean square deviation of the experimental and calculated transition frequencies. b) $J_{26} = -0.13$ Hz. c) SSCCs for protons of the methyl group: $J_3 = -0.51$, $J_4 = 0.26$, $J_5 = -0.62$, $J_5 =$

Novosibirsk Institute of Organic Chemistry, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1223-1230, September, 1984. Original article submitted October 10, 1983; revision submitted February 16, 1984.

TABLE 2. Parameters of the PMR Spectra of the 3-Substituted Pyridines NC_5H_4X

Com-	Chemical shifts, δ, ppm						$J_{ m HH}, m Hz$					MSD	
pound	Х	2-H	4-H	5-H	6-H	СН₃	J_{24}	I ₂₅	J ₂₆	J ₄₅	J 46	I_{56}	
XII XIII XIV	CH ₃ CN COCH ₃ COOCH ₃ N (CH ₃) ₂ NO ₂ OCH ₃ CI Br	8,435 9,054 9,156 9,114 8,128 9,396 8,320 8,657 8,733	7,599 8,347 8,305 8,308 7,071 8,636 7,384 7,956 8,076	7,282 7,660 7,586 7,600 7,165 7,771 7,339 7,482 7,419	8,393 8,897 8,822 8,857 7,901 9,006 8,189 8,571 8,596	2,296 2,663 3,932 2,913 — 3,833	2,18 2,30	0,90 0,90 0,71 0,73 0,69 0,76	$ \begin{array}{c c} -0,20 \\ -0,32 \\ -0,23 \end{array} $	7,97 7,97 8,51 8,45 8,46 8,25	1,70 1,72 1,74 1,35 1,48 1,36 1,42	4,85 4,55 4,79 4,65	0,002 0,002 0,002 0,010 0,001 0,010 0,001

a) SSCCs of the protons of the methyl group: $J_2 = -0.66$, $J_4 = -0.70$, $J_5 = 0.40$, $J_6 = -0.55$ (±0.03) Hz. b) $|J_{HH}| < 0.15$ Hz.

formation that can be obtained from an analysis of the influence of substituents on the $^{1}H^{-1}H$ SSCCs and the chemical shifts of the protons and the ^{13}C nuclei[8].

The calculated values of the ¹³C-¹H SSCCs for nitrogen-containing heterocycles are in poor agreement with their experimental values [9]. It has been shown [10] that, at the present time, in order to predict the influence of substitution on the ¹³C-¹H SSCCs, correlations with empirical parameters are more useful than theoretical calculations. Consequently, the aim of the present work was to study the empirical dependences of the ¹³C-¹H SSCCs in 2- and 3-substituted pyridines on the properties of the substituents.

We have made a complete analysis of the proton—coupled 13 C NMR spectra of a number of 2- and 3-substitute pyridines recorded under standard conditions using the parameters of the PMR spectra. The compounds investigated contained substituents which, in relation to the degree of their action of the systems studied, may be arbitrarily divided into the following groups [8]: electroneutral — H, CH₃; π -acceptors — CN, NO₂, COCH₃, COOCH₃; π -donors — N(CH₃)₂, OCH₃; and halogens — Cl, Br.

Tables 1 and 2 give the parameters of the PMR spectra of the 2- and 3-substituted pyridines. The negative sign of J_{26} in the 3-substituted pyridines follows from the calculations of the PMR spectra of pyridine and 3-cyanopyridine; in the other compounds the sign of the constant is taken by analogy with these values. On comparison of the values obtained for the $^{1}\text{H-}^{1}\text{H}$ SSCCs with those known previously [11-13], a difference between the results of up to 0.2 Hz can be seen, which may be connected with errors in the investigations performed previously and also with the influence of the solvent and the concentration of the compounds under investigation on the values of these constants [14].

The parameters of the PMR spectra obtained were used in an analysis of the proton-coupled ^{13}C NMR spectra. The spectrum of each ^{13}C -isotopomer was calculated separately. As

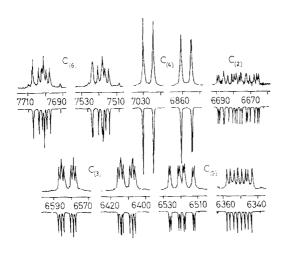


Fig. 1. Experimental and calculated 13 C NMR spectra of the monoresonance of 2-cyanopyridine, δ , Hz.

¹³C Chemical Shifts, 6, ppm, and ⁿJ_{CH} SSCCs, Hz, in the 2-Substituted Pyridines TABLE 3.

	MSD	0,047 0,036 0,036 0,056 0,055 0,055 0,012 0,029 0,054
	3/46	6,25 6,43 6,02 6,03 6,83 6,40 7,14 6,72 6,67
C(4)	2/45	0,74 1,12 0,88 0,78 0,96 1,63 1,42 1,42 1,45 1,45
	2,743	0,74 0,68 0,20 0,20 0,51 0,39 0,33 1,25 0,29 0,38
	1,144	163,33 162,59 168,73 165,58 166,35 159,75 169,60 162,43 166,41
	Q.	136,03 137,02 137,96 137,34 137,45 137,19 140,84 138,95 139,78
	MSD	0,043 0,064 0,019 0,033 0,036 0,012 0,012 0,012
	*J36	1,50 1,61 1,53 1,53 1,50 1,50 1,50
C ₍₃₎	3.J.35	6,53 6,96 6,86 6,82 6,60 7,36 7,10 7,10
Ü	2 J 34	0,98 0,91 0,91 1,51 1,32 1,32 1,38 1,38
	1,33	163,79 162,39 170,91 166,60 167,42 162,00 174,62 165,74 172,19
	8	123,83 123,71 129,10 121,05 124,82 105,83 118,17 110,55 124,44 128,15;
	MSD	0,030 0,087 0,063 0,093 0,096 0,061 0,061
	4.126	0,100 1,110 1,10
C ₍₂₎	$^3J_{26}$	11,08 11,1 12,9 10,65 11,3 11,5 11,5 11,6 13,7
	3,724	6,84 7,1 8,3 6,52 7,1 10,2 10,2 11,1
	2 J 23	3,19 2,6 1,8 1,32 1,1 1,1 1,1 1,1 1,1 1,0
	٥	149,57 158,13 132,72 152,96 147,49 159,14 156,50 163,52 150,33
Com-	bonna	IIa IIIa IVC VII VIII VIII X

	MSD	0,030 0,020 0,030 0,058 0,055 0,014 0,042 0,032 0,033
	4Je3	0,30 0,30 0,30 0,30 0,30
	3,64	6,84 7,08 7,11 6,88 7,47 7,73 7,73 7,74
C(6)	2J65	6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
	1,566	177,94 177,21 183,73 180,65 181,13 174,45 174,45 186,02 178,32 183,02
	Ŷ	149,57 149,04 151,24 149,11 149,75 147,59 148,94 146,84 150,46
	MSD	0,043 0,013 0,019 0,058 0,058 0,018 0,018 0,007 0,007
	3J ₆₃	6,53 6,48 6,48 6,14 6,25 6,15 6,27 6,24 6,24
C ₍₅₎	2/56	8,35 7,93 8,62 8,62 7,83 7,83 8,04 8,04
	2,154	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
	1, 555	163,79 164,56 167,77 165,60 166,20 168,27 168,27 165,28 165,28
	δ	123,83 121,40 127,87 127,87 127,32 111,39 111,39 1116,91 123,08
Com-		

a) $\delta_{\text{CH}_3} = 24.17$ ppm; SSCCs of the protons of the methyl group: $J_{\text{C}(z)} = -5.5$, $J_{\text{C}(z)} = 4.2$, $J_{\text{C}(4)} = -0.3$, $J_{\text{C}(5)} = 0.8$, $J_{\text{C}(6)} = -0.4$ (±0.1) Hz. b) $\delta_{\text{CN}} = 117.50$ ppm. c) $\delta_{\text{CH}_3} = 25.50$, $\delta_{\text{CO}} = 186.34$ ppm. d) $\delta_{\text{CH}_3} = 52.33$, $\delta_{\text{CO}} = 165.20$ ppm. e) $\delta_{\text{CH}_3} = 37.65$ ppm. f) $|J_{\text{CH}}| < 0.2$ Hz. g) $\delta_{\text{CH}_3} = 52.88$ ppm.

¹³C Chemical Shifts, &, ppm, and ⁿJCH SSCCs, Hz, in the 3-Substituted Pyridines 4. TABLE

	MSD	0,051 0,040 0,025 0,025 0,025 0,017 0,013 0,008
	37.46	6,60 6,38 6,37 6,36 6,51 6,76 6,93 6,86
4)	37/12	5,66 6,48 7,22 1,32 1,32 1,32 1,32 1,32 1,44 1,32
C ₍₄₎	:748	0,87 1,41 1,02 1,10 1,28 1,24 0,85 1,05
	1,744	160,81 171,02 165,21 166,94 172,70 163,05 163,05 169,54
	ŝ	136,33 140,02 135,52 136,74 118,36 131,48 120,26 136,00
	MSD	0,075 0,022 0,064 0,067 0,076 0,062 0,062 0,019
	1,736	1,4 -1,6 -1,6 -1,6 -1,4 -1,8 -1,6 -1,9 -1,6
_	3,435	6,57 7,88 7,44,7 8,52 9,54 7,2,6
C ₍₃₎	1/34	0,6 -0,4 -0,8 -3,5 -3,3 -3,3 -3,1 -3,1 -3,1 -3,1 -3,1
ĺ	23,32	7,7 7,42 6,7 6,4 8,09 4,09 4,49
	ô	132,91 109,24 131,98 125,53 144,34 155,42 131,19
	MSD	0,016 0,017 0,013 0,036 0,012 0,009 0,010
	4/25	-1,13 -0,85 -0,91 -1,05 -1,07 -1,17
C ₍₂₎	3Jr6	11,43 11,62 11,40 11,48 11,34 11,97 11,61 11,61
Ű	35.4	6,10 5,30 5,48 4,64 4,47 4,47 4,86
	1/22	175,69 187,57 180,53 182,78 176,80 178,91 178,91 186,24
	Ø	149,90 152,42 149,51 149,97 134,71 137,48 137,48 148,19
Com-	punod	XIA XIIID XIIID XIVE XVI XVI XVIII XVIIII XVIIII

	MSD	0,014 0,016 0,016 0,018 0,019 0,019 0,004
	Σ_	000000000
	3,764	6,85 6,75 6,92 6,92 7,00 6,94 6,94
	\$J ₆₂	11,01 10,98 11,16 11,28 10,86 11,31 11,31 11,01 10,78
C ⁽⁶⁾	2.J 85	27.60.00.00.00.00.00.00.00.00.00.00.00.00.
	1 Jes	178,12 182,76 180,15 180,62 178,75 178,75 183,18 179,61 181,41
	Q.	146,71 153,26 153,39 153,62 137,10 155,15 141,64 147,92 147,92
	MSD	0,035 0,028 0,020 0,016 0,016 0,022 0,030 0,030
	4 523	-1,53 -1,54 -1,52 -1,52 -1,55 -1,55
	2/58	8,39 8,39 8,49 9,26 9,26 9,20 9,20
C ₍₅₎	2/54	0,94 0,17 0,17 0,54 0,56 0,01 0,01
	1,56	162,93 166,60 166,60 167,22 160,92 170,64 163,43 167,00
	٥	123,23 124,10 123,82 123,83 123,28 124,57 124,03 125,09 125,09
Сош-	punod	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

a) $\delta_{CH_3} = 17.87$ ppm; SSCCs of the protons of the methyl group: $J_C(2) = 5.3$, $J_C(3) = -5.9$, $J_C(4) = 5.1$, $J_C(5) = -0.4$, $J_C(4) = 0.9$ (±0.1) Hz. b) $\delta_{CN} = 116.99$ ppm. c) $|J_{CH}| < 0.2$ Hz. d) $\delta_{CH_3} = 26.87$, $\delta_{CO} = 197.37$ ppm. e) $\delta_{CH_3} = 52.34$, $\delta_{CO} = 165.18$ ppm. f) $\delta_{CH_3} = 39.57$ ppm. g) $\delta_{CH_3} = 55.34$ ppm.

TABLE 5. SSCCs JCH, Hz, in the Monosubstituted Benzenes CeHsX

{	z	26 21 28
j	MSD	0,033 0,025 0,026
C ₍₄₎	144	160,35 160,34 160,18
	140	1,36 1,25 0,87
	N Je	7,62 7,76 7,45
	z	28 30
	MSD	0,027 0,028 0,065
	136	-1,15 -1,15 -0,78
C ₍₃₎		7,66 7,71 8,39
	J. J	1,32 1,26 1,79
ł	J. 33	161,35 161,62 156,39
	J.32	0,60 0,61 -0,29
	z	32 31 39
	MSD	0,042
	J.26	6,26 6,06 5,46
C(2)	Jas	-1,26 -1,32 -1,33
	Jza	7,70 7,70 7,70 7,65
	J. 2.3	1,58 1,64 1,76
	J_{22}	160,69 162,82 156,18
	ž	16 17 16
	MSD	-1,34 0,024 -1,38 0,040 -1,34 0,065
C(1)	7.7	
	1,13	7,25 7,72 8,37
	115	0,11 -0,52 -0,75
;	4	COCH ₃ COOCH ₃ N(CH ₃) ₂

a) Number of transitions assigned in the calculations.

TABLE 6. Parameters of the $^{13}C^{-1}H$ SSCC Correlation in 2-Substituted Pyridines (JPyr) and Monosubstituted Benzenes (Jbz) Calculated from the Equation JPyr = $A \cdot J^{bz} + B$

J ^{pyr}	Jbz	A	В	r	ε	ΔJ ^{pyr} , Hz ^a
2/23 3/24 3/26 4/25 1/33 2/34 3/35 4/36 1/44 2/43 2/45 3/46 1/56 2/56 3/53 1/66 2/56 3/53	$ \begin{array}{c} 2J_{12} \\ 3J_{13} \\ 3J_{13} \\ 4J_{14} \\ 1J_{22} \\ 2J_{23} \\ 3J_{24} \\ 4J_{25} \\ 1J_{33} \\ 2J_{32} \\ 2J_{34} \\ 3J_{35} \\ 1J_{44} \\ 2J_{43} \\ 3J_{42} \\ 1J_{33} \\ 2J_{34} \\ 3J_{42} \\ 1J_{33} \\ 2J_{34} \\ 3J_{43} \\ 3J_{45} \\ 4J_{36} \\ \end{array} $	0,871 1,223 0,748 1,394 1,039 1,009 1,223 	1,80 -2,24 5,37 0,86 -0,08 -0,19 -2,77 -15,66 -0,04 -0,88 -0,63 -7,13 -6,40 -25,44 2,06 0,37 0,77	0,978 0,977 0,944 0,946 0,981 0,953 0,899 0,172 0,988 0,958 0,961 0,956 0,952 0,717 0,886 0,127 0,965 0,872 0,872	0,32 0,39 0,37 0,11 0,91 0,06 0,11 	4,49 4,58 2,05 0,93 12,62 0,78 0,83 0,14 9,85 1,07 0,93 1,12 4,48 0,36 0,99 0,39 9,28 0,85 0,95 0,63

a) Range of measurement of Jpyr.

an example, Fig. 1 gives the experimental and calculated spectra of 2-cyanopyridine. The values of the chemical shifts of the 13 C nuclei and the 13 C— 1 H SSCCs in the 2- and 3-substituted pyridines are given in Tables 3 and 4. The majority of 13 C— 1 H SSCCs obtained are accurate to within 0.1 Hz. The deviation of the 13 C— 1 H SSCCs in pyridine and 2-bromopyridine from the values given in [4] amount to 0.3-1.4 Hz for the direct 13 JCH SSCCs and are of the order of 0.1 Hz for the 13 CH long-range SSCCs, which is possibly connected with the influence of the medium.

A certain difficulty in the study of the NMR spectra of nitrogen-containing compounds is presented by the quadrupole broadening of the lines caused by interaction with the ¹⁴N nuclei. Calculations made from the equations of Kintzinger and Lehn [15] have shown that in the ¹³C NMR spectra of pyridine such broadening of the lines does not amount to more than 0.1 Hz [4]. Similar values of the spectral broadening of the ¹³C NMR lines may also be expected in the case of the monosubstituted pyridines. In the PMR spectra, the signals of the 2-H and 6-H protons, which are close to the nitrogen, undergo pronounced broadening. This is connected with the large values of the ¹⁴N-¹H SSCCs for these protons (10-12 Hz [16]). Consequently, in the present work, to determine the ¹H-¹H SSCCs we used mainly the signals of 3-H, 4-H, and 5-H protons the broadening of the lines of which is insignificant and is within the limits of error of the experiment.

The values of the $^{13}\text{C}-^{1}\text{H}$ SSCCs in the 2- and 3-substituted pyridines obtained were compared with the corresponding constants in monosubstituted benzenes [10]. The lacking information in the monosubstituted benzene series [with the substituents COCH₃, COOCH₃, and $N(\text{CH}_3)_2$], which we obtained under conditions similar to those in [10], is given in Table 5. The results of the comparison are given in Tables 6 and 7.

A linear interrelationship of the 13 C- 1 H SSCCs in the 2- and 3-substituted pyridines and in the monosubstituted benzenes was found. The tangents of the angles of slope of the majority of relationships that are given in Tables 6 and 7 are between 0.7 and 1.3, which shows the moderate influence of the heterocycle on the 13 C- 1 H spin—spin coupling in this series. Complete absence of a correlation was found only for some long-range SSCCs 1 JCH, characterized by a small range of change under the influence of the substituent (<0.6 Hz). Furthermore, it is not excluded that some deviations from linearity in the relations presented may be connected with the influence of the solvent on the concentration of the 13 C- 1 H SSCCs, since in [10] the results were obtained for highly concentrated solutions of compounds in different solvents.

Earlier, for the case of halogen-substituted benzenes [17], an additivity of the influence of substituents on the ¹³C-¹H SSCCs was established. In the light of the results that

TABLE 7. Parameters of the ¹³C-¹H Correlation in the 3-Substituted Pyridines and Monosubstituted Benzenes^a

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ΔJ ^{pyr}	s	r	В	A	J^{bz}	J ^{pyr}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14,03	0,62	0,993			I 1 22	1/22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,01					3 <i>J</i> 26	J_{24}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,89	0,11		1,80	1,241	$^{3}I_{24}$	J ₂₆
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,40	- 1		7.01	0.001	⁴ J ₂₅	25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,55					2112	32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,48 2,94					31.	, 34 ,
$ \begin{pmatrix} I_{44} & & & & & & & & & & & & & & & & & & $	0,50	0,20		0,00	0,730	41	35
$ \begin{pmatrix} 45 \\ 42 \\ 42 \\ 43 \\ 46 \\ 46 \\ 45 \\ 56 \\ 42 \\ 43 \\ 44 \\ 45 \\ 56 \\ 66 \end{pmatrix} = \begin{pmatrix} 2I_{23} \\ 3I_{26} \\ 0,787 \\ 0,26 \\ 0,982 \\ 0,14 \\ 0,26 \\ 0,982 \\ 0,14 \\ 0,24 \\ 0,887 \\ 0,11 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,994 \\ 0,32 \\ 0,995 \\ 0,672 \\ 0,995 \\ 0,52 \\ 0,959 \\ 0,52 \\ 0,959 \\ 0,52 \\ 0,959 \\ 0,52 \\ 0,959 \\ 0,52 \\ 0,959 \\ 0,52 \\ 0,988 \\ 0,988 \\ 0,9$	11,89	0.42		1.31	1 021	1/14	30
$ \begin{pmatrix} 42 \\ 46 \\ 46 \\ 55 \\ 56 \\ 56 \\ 56 \\ 57 \\ 58 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 66 \\ \end{bmatrix} \begin{pmatrix} 3J_{26} \\ 3J_{24} \\ 1,148 \\ 1,148 \\ 1,148 \\ -2,42 \\ -16,96 \\ -0,29 \\ 0,994 \\ 0,994 \\ 0,993 \\ 0,07 \\ 0,961 \\ 0,11 \\ 0,672 \\ -2 \\ -38,61 \\ \end{bmatrix} \begin{pmatrix} 3J_{26} \\ 0,982 \\ 0,887 \\ 0,994 \\ 0,993 \\ 0,07 \\ 0,11 \\ 0,672 \\ -2 \\ 0,959 \\ 0,52 \\ \end{bmatrix} $	0,67					$^{2}J_{23}^{22}$	45
	2,46			0,26		$^{3}J_{26}$	42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,68			-2,42		$^{3}J_{24}$	46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9,72	0,32	0,994	-16,96		$^{1}J_{33}$	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,66			-0,29		$^{2}J_{32}$	54
$^{\circ}_{6}$ $^{1}J_{44}$ 1 1 3 4 1 3 4 1 1 3 4 1 1 3 4 1	1,11	0,11		6,49	1,609	$^{2}J_{34}$	56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,34				1	4J ₃₆	52
	5.24			-38,61		1 5 44	66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,65	0,05	0,977	1,78	1,268	$^{2}J_{43}$	65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,53 0,25	ŀ		_		31	62

a) Analogous to the parameters of Table 6.

TABLE 8. Correlation Parameters of the Direct 1JCH SSCCs in 2- and 3-Substituted Pyridines (J^{pyr}) with the F and R Constants of Substituents from the Equation $J^{pyr} = A \cdot F + B \cdot R + C$, Hz

N ^a	J ^{pyr}	A	В	С	r	s
2	$J_{33} \\ J_{44} \\ J_{55} \\ J_{66}$	17,90 8,57 6,19 11,84	1,17 4,52 0,14 3,64	162,63 163,13 164,17 177,46	0,934 0,988 0,964 0,966	1,84 0,54 0,45 1,05
3	$J_{22} \\ J_{44} \\ J_{55} \\ J_{66}$	19,97 16,08 9,54 7,89	1,62 2,89 3,93 0,22	176,52 161,85 163,56 178,09	0,952 0,951 0,990 0,983	1,74 1,54 0,48 0,38

a) Position of the substituent.

we have obtained one may probably expect the appearance of an analogous effect for the substituted pyridines. In actual fact, an additivity of the influence of substituents on the ¹JCH in polysubstituted pyridines (deviations from the calculated values not exceeding 2 Hz) has been reported [6]. The hypotheses put forward probably extend to more complex nitrogencontaining aromatic heterocycles. Thus, a study of the ¹³C—¹H SSCCs in methyl— and aminosubstituted pyrimidines [18] has also shown the existence of an additivity of the influence of the substituents.

With the aim of making a detailed study of the influence of substitution on the $^{13}\text{C}^{-1}\text{H}$ SSCCs in 2- and 3-substituted pyridines, a correlation has been made between these parameters and the resonance and inductive constants of the substituents (Swain-Lupton F and R constants in the interpretation of Hansch et al. [19]). As a result, satisfactory correlations have been obtained for all the direct ^{13}CH SSCCs (Table 8). However, for the majority of long-range SSCCs, ^{13}CH , no similar correlation was found, which confirms the conclusion made previously [8] on the basis of results from monosubstituted benzenes that it is impossible in general to describe the $^{13}\text{C}^{-1}\text{H}$ SSCCs satisfactorily within the framework of linear two-parameter relations.

In the present work we have investigated the possibility of describing the other parameters of the PMR spectra and of the protein-coupled ¹³C NMR spectra of the 2- and 3-substituted pyridines with the aid of the inductive and resonance constants of the substituents. As a result, satisfactory correlations with the F and R constants have been obtained for all

the chemical shifts of the protons ($r \ge 0.96$) and the chemical shifts of the ¹³C nuclei present in the para position to the substituent ($r \ge 0.99$), which confirms the conclusions drawn by Smith and Proulx [3]. To improve the description of the parameters of the spectra these authors [3] have proposed to use additional data characterizing the electronic nature of the substituents (parameters of Schaefer's ortho effects). However, the use of these parameters (together with the F and R constants) within the framework of three-parameter relations gives definite improvement only for the description of the chemical shifts of the ¹³C nuclei and is of little significance for the interpretation of the ¹H—¹H and ¹³C—¹H SSCCs.

EXPERIMENTAL

The PMR and 13 C NMR spectra were recorded on a Bruker WP 200 SY spectrometer working in the pulsed regime (working frequency for protons 200.13 MHz and for 13 C nuclei 50.33 Hz) at 23 ± 2°C for solutions of the pyridines in DMSO-D₆ (1 M) containing 3-5% (by volume) of TMS. Stabilization was effected with respect to the NMR signal of the deuterium of the solvent.

Conditions for Recording the Spectra. PMR spectra: 5-mm ampul, 4-10 accumulations; widths of the full spectrum 2 kHz, numerical resolution 0.25 Hz; aromatic region of the spectrum: width 400 Hz, numerical resolution 0.05 Hz. ¹³C NMR spectra: 10-mm ampul; width of the full spectrum 10 kHz, numerical resolution 0.6 Hz, number of scans >100, regime of complete spin decoupling from protons; aromatic region of the spectrum: 2-3 kHz, numerical resolution 0.12-0.18 Hz, number of scans >2000, delay between pulses 15-20 sec, regime of "proton-pumping" between the pulses.

In order to simplify the proton-coupled ^{13}C spectra for the methylpyridines we used selective spin decoupling from methyl protons (amplitude of the irradiating field 10-15 Hz, which led to errors in the measurement of the $^{13}\text{C-}^{1}\text{H}$ SSCCs under our conditions of not more than 0.01% [10]). A similar regime was used for compounds containing methyl groups within the substituent.

The width of the lines (at half-height) in the PMR spectrum was 0.2-0.3 Hz (for the 2-H and 6-H protons, 0.4-0.8 Hz), and in the proton-coupled ¹³C NMR spectra it was 0.3-0.5 Hz.

The NMR spectra of the monosubstituted benzenes (Table 5) were recorded for 50% (by volume) solutions of the compounds in acetone-D₆ under conditions similar to those given above.

All the spectra were calculated with the aid of the PANIC iteration program (in the LAOCOON version) on an ASPECT-2000 minicomputer. The ¹³C NMR spectra were calculated as ABCDX five-spin systems, where X is a ¹³C nucleus (for pyridine and benzenes, six-spin systems). The initial values of the ¹³C-¹H SSCCs were taken from the literature [4, 5] and from a comparison with the parameters for benzenes [10]. The number of lines assigned in the calculations was 21-24 (PMR spectra of the 2-substituted pyridines; signals of the 3-H, and 5-H protons), 14-16 (PMR spectra of the 3-substituted pyridines; signals of the 4-H and 5-H protons); or 12-17 (¹³C NMR spectra; for the signals of each ¹³C nucleus); in the case of pyridine and the benzenes, for all the different transitions in the spectra.

The values of the mean square deviations of the experimental and calculated transition frequencies obtained are given in the tables. The standard deviations for the calculated parameters (taking the numerical resolution into account, were about 0.02 Hz for the $^{1}\text{H}^{-1}\text{H}$ SSCCs and 0.03-0.05 Hz for the $^{13}\text{C}^{-1}\text{H}$ SSCCs, apart from the constants for the substituted carbon atoms C(2) and C(3), which were determined with an accuracy of 0.2 Hz ($^{3}\text{J}_{24}$ and $^{3}\text{J}_{26}$ in 2-nitropyridine, 0.5 Hz). The error in the determination of the J₂₆ SSCCs from the PMR spectra of the 3-substituted pyridines was 0.05 Hz. The chemical shifts of the nuclei were determined from the full PMR and $^{13}\text{C}^{-}\{^{1}\text{H}\}$ NMR spectra with accuracies of 1.10-3 and 2.10-2 ppm, respectively (the correction for infinite dilution did not exceed 4.10-2 and 0.1 ppm).

The compounds investigated were obtained by known methods [20], and the values of their physical constants agreed with those given in the literature. The prepared samples, before the recording of the spectra, were subjected to additional purification, and their purity was checked by TLC and GLC.

LITERATURE CITED

- 1. J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York (1972), p. 250.
- 2. G. Miyajima, Y. Sasaki, and M. Suzuki, Chem. Pharm. Bull., <u>20</u>, 429 (1972).

- 3. W. B. Smith and T. W. Proulx, Org. Magn. Reson., 8, 567 (1976).
- 4. M. Hansen and H. J. Jakobsen, J. Magn. Reson., 10, 74 (1973).
- 5. Y. Takauchi and N. Dennis, Org. Magn. Reson., 7, 244 (1975).
- 6. Y. Takauchi and K. Aoki, J. Chem. Soc., Perkin Trans. II, No. 3, 285 (1979).
- 7. N. M. Sergeev, NMR Spectroscopy [in Russian], Izd. MGU, Moscow (1979), p. 94.
- 8. V. A. Chertkov, Dissertation for the degree of Candidate of Chemical Sciences, Moscow (1982).
- 9. S. A. T. Long and J. D. Memory, J. Magn. Reson., 44, 355 (1981).
- 10. L. Ernst, V. Wray, V. A. Cherkov, and N. M. Sergeyev, J. Magn. Reson., 25, 123 (1977).
- 11. W. B. Smith and J. L. Roark, J. Phys. Chem., <u>73</u>, 1049 (1969).
- 12. T. J. Batterham, NMR Spectra of Simple Heterocycles, Wiley, New York (1973), p. 27.
- 13. Y. Sasaki and M. Suzuki, Chem. Pharm. Bull., 17, 1104 (1969).
- 14. D. W. Aksnes and H. Kryvi, Acta Chem. Scand., 26, 2255 (1972).
- 15. J. P. Kintzinger and J. M. Lehn, Mol. Phys., <u>14</u>, 133 (1968).
- 16. W. Städeli, P. Bigler, and W. Philipsborn, Org. Magn. Reson., 16, 170 (1981).
- 17. A. R. Tarpley and J. H. Goldstein, J. Phys. Chem., 76, 515 $(19\overline{72})$.
- 18. M.-T. Chenon and J. Riand, Org. Magn. Reson., 15, 18 (1981).
- 19. C. Hansch, A. Leo, S. H. Unger, K. M. Kim, D. Nikaitani, and E. J. Lien, J. Med. Chem., 16, 1207 (1973).
- 20. The Chemistry of Heterocyclic Compounds, A. Weissberger (ed.), Interscience, New York, Vol. 14 (1960).

NEW METHOD OF SYNTHESIZING PYRIDYL- AND QUINOLYLCARBONYLARENECARBOXYLIC ACIDS

G. A. Karlivan and R. É. Valter

UDC 547.589.5'824'831.8:541.62

An original method has been developed for the synthesis of a number of pyridyland quinolylcarbonylarenecarboxylic acids by condensing anhydrides of aromatic dicarboxylic acids with picolinic and quinaldic acids. The characteristics of the IR spectra of the compounds synthesized are given, and their ring-chain equilibrium transformations are discussed. It has been shown that the protonation of the nitrogen atom of the heterocycle stabilizes the cyclic form.

We have previously detected the stabilization of the ring form of 2-(imidazol-2-ylcarb-onyl)benzamides by the protonation of the imidazole ring [1, 2]. It appeared of interest to investigate the influence of this effect on ring-chain equilibrium systems of keto carboxylic acids and their derivatives having other nitrogen heterocycles attached to the keto group.

The aim of the present work was to synthesize and investigate pyridyl- and quinolylcarb-onylarenecarboxylic acids.

2-(2-Pyridylcarbonyl)benzoic acid (Ia) has long been known, but the methods previously used for its preparation [3, 4] involve many stages and are laborious. We [5] have obtained the acid (Ia) by condensing phthalic anhydride with picolinic acid at the temperature of decarboxylation of the latter (160-165°C) in a high-boiling organic solvent (nitrobenzene, benzonitrile, cymene, diethyleneglycol diethyl ether). This method is favorably distinguished from those known previously [3, 4] by the fact that it is a single-stage process, by the use of readily available reactants, and by the simplicity of its practical performance.

We have studied the possibility of expanding the boundaries of this method by using carboxylic acids of other nitrogen heterocycles, and also the anhydrides of other aromatic dicarboxylic acids. Thus, in the analogous reaction of naphthalic and diphenic anhydrides with

A. Ya. Pel'she Riga Polytechnic Institute. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1231-1234, September, 1984. Original article submitted October 10, 1983; revision submitted January 31, 1984.